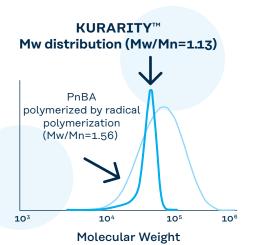

Kurarity™



KURARITY™ is a novel acrylic copolymer based on Kuraray's two main stream technologies.

KURARITY

Anionic living polymerization by an unique catalyst system

Features

- Extremely low residual monomer or oligomer
- Extremely low odor
- Low hardness without plasticizer

3rd Generation

"Hydrogenated Styrenic Block Copolymer" (HSBC)

- SEPTON™
- HYBRAR[™] hydrogenated grades

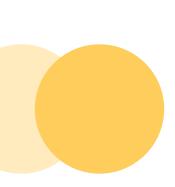
Advanced anionic living polymerization + Hydrogenation

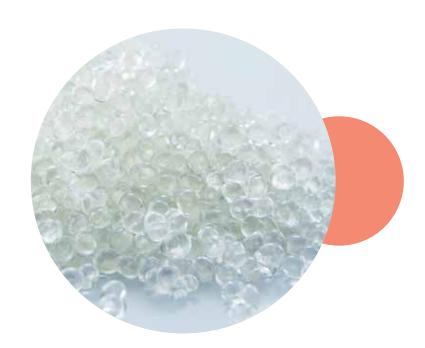
2nd Generation

"Isoprene based Rubbers"

- Trans-Polyisoprene (TP)
- Kuraray Liquid Rubber

Anionic living polymerization


1st Generation


 Isoprene Rubber for Natural rubber substitution (*now terminated)

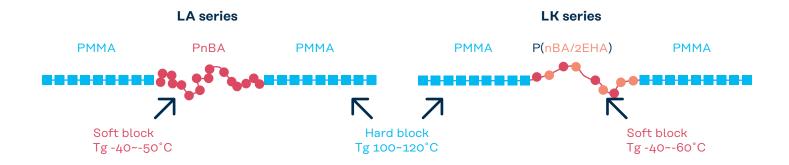
Ziegler-Natta

Contents

Structure and characteristics of KURARITY™	3
Comparison of KURARITY™ with other transparent materials	4
Potential applications for KURARITY™	5
Grades of KURARITY™	6
Physical and mechanical properties of KURARITY™	7
Temperature dependency of viscosity (liquid grade)	8
Adhesive properties of KURARITY™	9
Solubility parameters of KURARITY™	10
Solvent solubility of KURARITY™	11
Properties of KURARITY™	12
Dynamic viscoelastic behavior of KURARITY™	13
Temperature dependency of tanδ	14
Thermal stability of KURARITY™	15
Weatherability of KURARITY™	16
Moisture absorption of KURARITY™	17
Chemical resistance of KURARITY™	18
Painting and printing properties of KURARITY™	19
Overmolding with other thermoplastics with KURARITY™	19
KURARITY™ as resin modifier	20-21
Standard injection molding conditions of KURARITY™	22
Standard extrusion molding conditions of KURARITY™	23
Standard compounding conditions of KURARITY™	24
Important notice	25

Structure and characteristics of KURARITY™

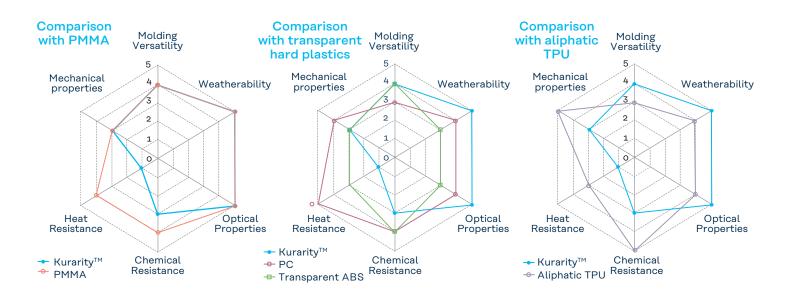
MAM: All acrylic block copolymer


Methyl-methacrylate Acrylate Methyl-methacrylate

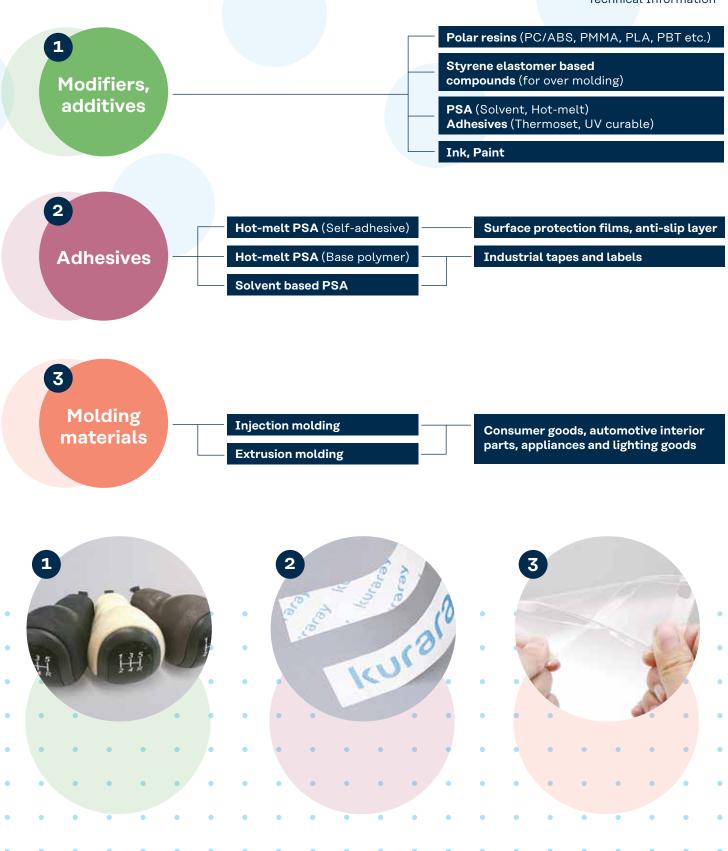
Kuraray leads the world in producing this novel acrylic block copolymer using its unique living anionic polymerization technology. Various type acrylates can be copolymerized as A-B-A type block copolymer.

This unique technology provides the following advantages:

- Excellent clarity
- Excellent weatherability with no concerns about hydrolytic degradation
- Extremely low residual monomer or oligomer
- Ultimately less odor
- Self-adhesive without tackifier and plasticizer
- Good compatibility with high polar materials


Kuraray developed two families of KURARITY™ called LA series and LK series. LA series utilizes a poly (n-butyl acrylate) mid-block while the LK series utilizes a poly (n-butyl acrylate/2-ethylhexyl acrylate) mid-block.

By forming PMMA as the hard block(s) and poly (n-butyl acrylate) or a poly (n-butyl acrylate/2-ethylhexyl acrylate) as the soft block, KURARITY™ exhibits elastomer properties at temperatures lower the than Tg of PMMA.


Comparison of KURARITY™ with other transparent materials

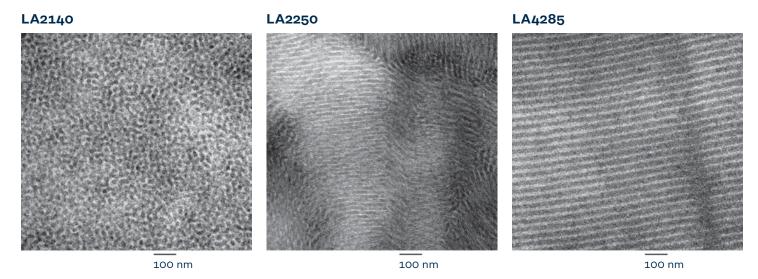
	Method	Condition (Unit)	KURARITY™ LA4285	РММА	PC	Transparent ABS	Aliphatic TPU
Transmittance	ISO 13468-1	3mm/D65 (%)	91<	92<	89	88.5	88.7
Haze	ISO 14782	3mm (%)	<2	<0.3	1.0	9.9	9.8
Tensile Strength at break	ISO 527-2	(MPa)	19	60-80	60	42	32
Tensile Strain at break	ISO 527-2	(%)	90	2-7	90	50	800
Flexural Modulus	ISO 178	(MPa)	650	3300	2300	2000	60
Charpy Impact Strength unnotched	ISO 179	1eU(kJ/m²)	NB	19-23	NB	NB	NB
Charpy Impact Strength notched	ISO 179	1eU(kJ/m²)	28	1.3-1.4	50	15	NB
DTUL	ISO 75-12	1.82MPa (°C)	58	86-101	124	73	-
Vicat Softening Point	ISO 306	B50Annealed (°C)	50	92-100	150-155	87	75-130
Surface Resistivity	IEC 60093	(Ω)	0.6*1016	1016<	1015<	1016<	1013-1015
Volume Resistivity	IEC 60093	(Ω.cm)	1.1*10 ¹⁵	2.7*10 ¹⁶	2.0*10 ¹⁷	5.5*1016	10 ¹³ -10 ¹⁷
Specific Gravity	ISO 1183	(-)	1.11	1.19	1.20	1.10	1.15
Rockwell Hardness	ISO 2039-2	R scale	47	(124)	(122)	108	70
Trockwort Har arross		M scale	(18)	94-103	55	46	(48)
Durometer Hardness	ISO 7619-1	Type D	46	85-90	75-85	70-80	43
Linear Thermal Expansion	ISO 11359-2	Type A ave.20-50deg (*10^-5K-1)	95 10	95< 6	95< 7	95< 9-11	85 10-20
Flammability	UL 94	(-)	(HB)	НВ	V-2	НВ	(HB)
Water Absorption at 23°C	ISO 62	24hr (%)	0.9	0.3	0.2	0.8	0.8
Mold Shrinkage	ISO 8328	(%)	1.0-1.5	0.2-0.6	0.5-0.7	0.5	1.2-2.0
Refractive Index	ISO 489	nd	1.48	1.49	1.585	1.52	1.49-1.55
Abbe's Number	ISO 489	(-)	58	58	30	-	-
Pencil Hardness	ISO 15184	(-)	6B	2H-3H	2B	В	6B-H

Potential applications for KURARITY™ with other transparent materials

Technical Information

Grades of KURARITY™

LA series: n-butyl acrylate based block copolymers


LK series: n-butyl acrylate/2-ethylhexyl acrylate based block copolymers

The grade map of KURARITY™

Microphase separation structure of LA series

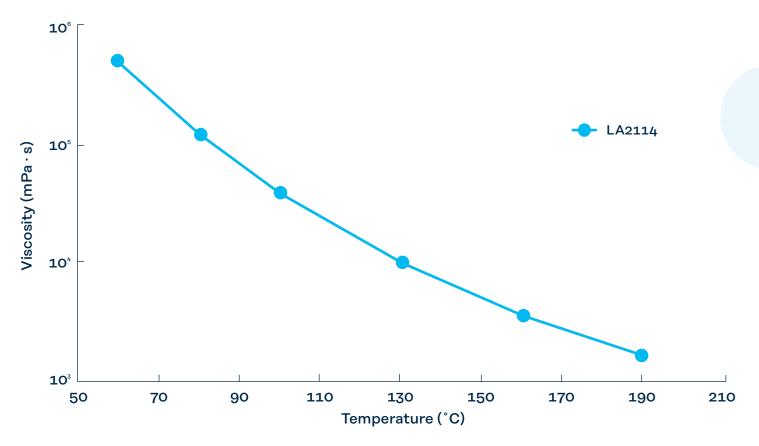
Black: PMMA, White: PnBA

Physical and mechanical properties of KURARITY™

Standard grades

The figures are typical values and not the guaranteed value.

	Test Method	Units	LA3320	LA2330	LA2250	LA2270	LA4285
	ISO 7619-1 (Type A) 0 sec	(-)	21	26	68	73	92
Hardness	ISO 7619-1 (Type A) 15 sec	(-)	16	18	55	68	90
	ISO 7619-1 (Type D) 0 sec	(-)	<5	<5	23	32	54
	ISO 7619-1 (Type D) 15 sec	(-)	<5	<5	13	22	47
Specific Gravity	ISO 1183	(-)	1.06	1.07	1.09	1.10	1.12
MFR	ISO 1133 [190°C 2.16 kg]	(g/10min)	5.3	3.0	53	4.8	1.5
MFK	ISO 1133 [230°C 2.16 kg]	(g/10min)	57	36	650	93	35
Modulus at 100%	ISO 37	(MPa)	0.52	1.2	3.6	9.3	19
Tanaila Strangth	ISO 37	(MPa)	5.4	7.9	8.8	15	25
Tensile Strength	ISO 527-2	(MPa)	-	-	-	-	17
Tanaila Elengation	ISO 37	(%)	560	430	470	260	160
Tensile Elongation	ISO 527-2	(%)	-	-	-	-	150
Flexural Modulus	ISO 178	(MPa)	-	-	-	-	750
Charpy Impact	ISO 179-1 (Notched : 1eA)	(kJ/m²)	NB	NB	NB	NB	30
Transmittance	ISO 13468-1 [3mm]	(%)	92	92	92	93	93
Haze	ISO 14782 [3mm]	(%)	2.0-6.0	2.0-6.0	2.0-6.0	<2.0	<2.0
	For PSA		+	+	+		
Suitable Applications	For Molding				+**	+**	+
Applications	For Compound, Additives		+**	+**	+**	+**	+


Specialty grades

	Test Method	Units	LA2140	LA3710	LK9243
	ISO 7619-1 (Type A) 0 sec	(-)	33	15	17
Hardness	ISO 7619-1 (Type A) 15 sec	(-)	22	9	12
	ISO 7619-1 (Type D) 0 sec	(-)	<5	<5	<5
	ISO 7619-1 (Type D) 15 sec	(-)	<5	<5	<5
Specific Gravity	ISO 1183	(-)	1.08	1.05	1.04
MFR	ISO 1133 [190°C 2.16 kg]	(g/10min)	64	11	99
MFR	ISO 1133 [230°C 2.16 kg]	(g/10min)	>350	>50	>350
Modulus at 100%	ISO 37	(MPa)	1.5	0.24	0.73
Tanaila Otwanath	ISO 37	(MPa)	5.5	3.2	3.0
Tensile Strength	ISO 527-2	(MPa)	-	-	-
Tanaila Elangation	ISO 37	(%)	620	780	300
Tensile Elongation	ISO 527-2	(%)	-	-	-
Flexural Modulus	ISO 178	(MPa)	-	-	-
Charpy Impact	ISO 179-1 (notched : 1eA)	(kJ/m²)	NB	NB	NB
Transmittance	ISO 13468-1 [3mm]	(%)	92	92	92
Haze	ISO 14782 [3mm]	(%)	2.0-6.0*	-	2.0-6.0*
	For PSA		+	+	+
Suitable Applications	For Molding				
Applications	For Compound, Additives		+**		+**

^{*} The HAZE value is normally worse due to the anti-blocking agent dusted onto the material. ** These grades can block or bridge while feeding into the extruder.

Some solutions to break it should be implemented.

Temperature dependency of viscosity (Viscous Liquid Grade)

	LA2114		
ISO1183	1.04		
	60°C	503,000	
	80°C	123,000	
ISO 2555	100°C	39,500	
	130°C	10,350	
	160°C	3,700	
	190°C	1,700	
-40 ~ -50			
		ISO1183 1.0 60°C 80°C 100°C 130°C 160°C 190°C	

ISO 2555, Brookfield Programmable DV-II + Viscometer, Spindle: No. 29 Tested by Kuraray

Tested by Kuraray

Adhesive properties of KURARITY™

KURARITY™ itself exhibits self-adhesive properties as the following data show. KURARITY™ could be used as an adhesive without tackifier or plasticizer.

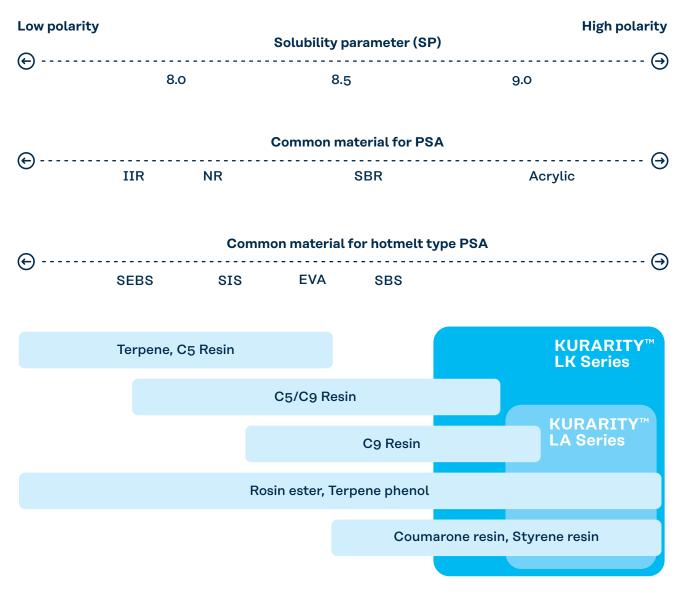
Using KURARITY™ as an adhesive enables to get the following two properties:

- Super clean (less remaining adhesive on the surface after removal)
- Good tack even at very low temperatures

		LA2140	LA2330	LA3320	LA3710	LK9243
Creep test at 60°C (mm)	to Stainless steel	<0.1	<0.1	<0.1	<0.1	0.8
SAFT (°C)	to Stainless steel	145	170	163	153	137
SAFI (C)	to Glass	148	171	159	161	-
Ball tack		5	7	9	6	8
Loop tack test (N/10mm)	to PMMA	4.2	10.8	14.0	15.7	10.8
	to Stainless steel	15.0	16.6	14.0	13.4	7.4
180° Peel adhesion	to Glass	11.1	16.5	14.4	11.8	16.0
(N/25mm)	to Polyethylene	0.4	0.7	1.0	0.7	0.6
	to PMMA	16.8	16.2	15.4	13.1	15.4

Test Specimens - PET (50µm)/KURARITY™ (25µm), toluene solution

Test Conditions


Creep Test - 1.0kgf, Sample size 25mm×25mm, 1000min

SAFT - 0.5kgf, Sample size 25mm×25mm, 0.5°C/min

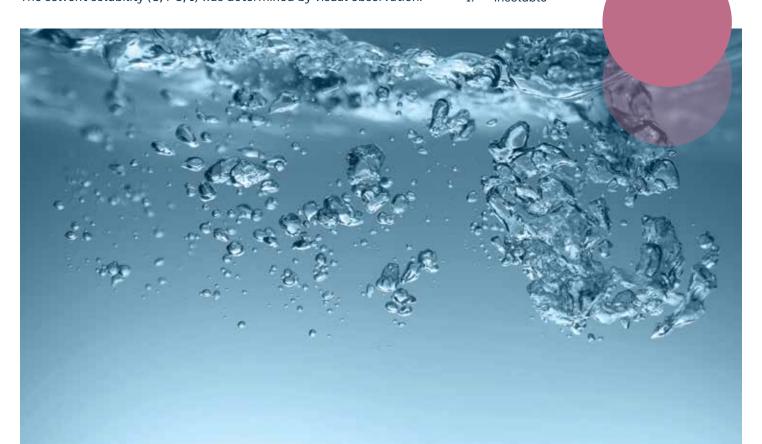
Ball Tack - JIS Z0237

Solubility parameters of KURARITY™

- Adhesive performance can be controlled by tackification.

 Tackifiers and plasticizers can be chosen referring to solubility parameter.
- Rosin ester, terpene phenol and styrenic resins with lower softening temperature are suitable.

Solvent solubility of KURARITY™


Solvent	LA2140	LA2330	LA3220	LA2250	LA2270	LA4285	LA9243
Toluene	S	S	S	S	S	S	S
Xylene	S	S	S	S	S	S	S
Methyl acetate	S	S	S	S	S	S	S
Ethyl acetate	S	S	S	S	S	S	S
Butyl acetate	S	S	S	S	S	S	S
Acetone	S	S	S	S	S	S	S
Methyl ethyl ketone	S	S	S	S	S	S	S
Methyl isopropyl ketone	S	S	S	S	S	S	S
Methyl isobutyl ketone	S	S	S	S	S	S	S
Tetrahydrofuran	S	S	S	S	S	S	S
Ethylene glycol monoethyl ether acetate	S	S	S	S	S	S	S
Heptane	PS	PS	PS	PS	I	I	PS
Cyclohexane	PS						
Methanol	PS						
Ethanol	PS						
Isopropyl alcohol	PS						

Test method

2g of KURARITY™ (pellets) and 18g of solvent were mixed in a vessel and shaken at room temperature for 2 days.

The solvent solubility (S, PS, I) was determined by visual observation.

S: soluble
PS: partially soluble
I: insoluble

Properties of KURARITY™

Thermal conductivity

Tested by Kuraray

Grade	Thermal Conductivity [W/(m·K)]
LA2140	0.17
LA2330	0.16
LA3320	0.16
LA3710	0.14
LA2250	0.17
LA2270	0.15
LA4285	0.17
LK9243	0.15

Test method: ASTM E1530, 23°C

Test piece: 50mm * 50mm * 3mmt, injection molded sample

Contact angle

Grade	Angle (deg)
LA3710	106
LK9243	103
LA3320	101
LA2330	98
LA2140	91
LA2250	88
LA4285	84
PC	89
PMMA	73

Test method: by image processing method

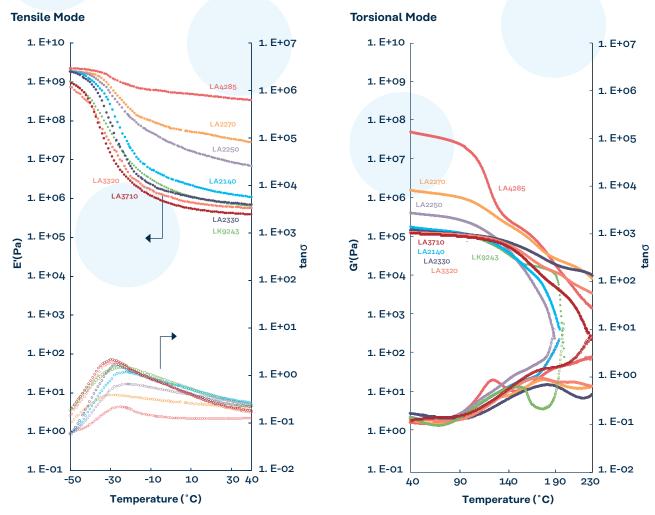
Test piece size: 50mm * 50mm * 3mmt, injection molded sample

Solvent: purified water

Electrical properties

Grade	Relative Permittivity ε _,			Dielectric Dissipation Factor tanδ			
Grade	60 Hz	60 Hz 1 kHz 1 MHz		60 Hz	1 kHz	1 MHz	
LA2330	5.08	4.94	4.39	0.0152	0.0147	0.0624	
LA3320	5.24	5.14	4.60	0.0112	0.0113	0.0654	
LA3710	5.01	4.93	4.93	0.00805	0.00749	0.00749	
LA2270	4.84	4.60	3.97	0.0288	0.0267	0.0552	
LA4285	4.56	4.26	3.68	0.0394	0.0338	0.0448	
LK9243	4.58	4.46	3.95	0.0135	0.0136	0.0694	

Test method: JIS C 2138, 23°C Test piece: 75mm * 75mm * 1mmt, compression molded sheet

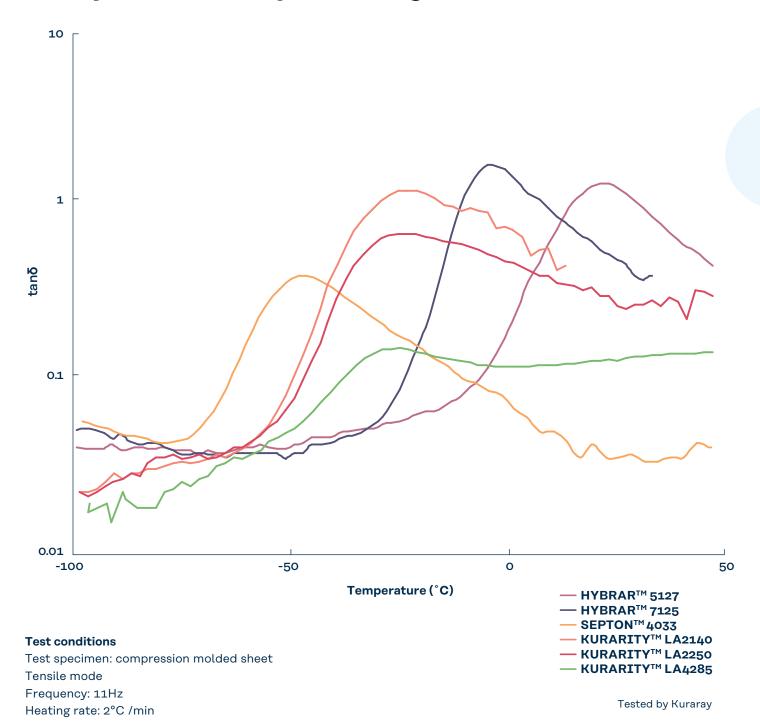

Moisture permeability

Grade	Water Vapor Transmission Rate g/(m²⋅24 h)
LA2140	580
LA2330	610
LA3320	760
LA2250	480
LA2270	510
LA4285	320
LK9243	510

Test method: JIS Z 0208 (Dish method), 40°C 90%RH

Test piece: 60mm * 60mm * 0.1mmt, compression molded sheet

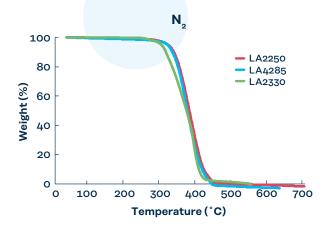
Dynamic viscoelastic behavior of KURARITY™

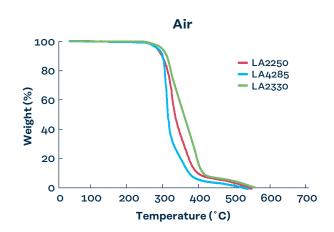

Tested by Kuraray

• All the KURARITY™ grades show similar low temperature properties which result from Tg of poly (n-butyl acrylate) or poly (n-butyl acrylate/2-ethylhexyl acrylate) and heat resistance from Tg of PMMA

Temperature dependency of tanδ

- HYBRAR™ is a series of styrenic elastomers developed by Kuraray Co., Ltd. which offer high vibration damping properties due to its tanδ peak near room temperature.
- SEPTON™ is a series of hydrogenated styrenic elastomers developed by Kuraray Co., Ltd. which has its tanδ peak at lower temperature and shows rubber-like properties at room temperature.

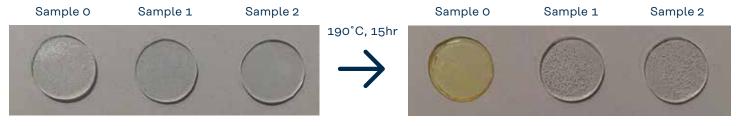

Thermal stability of KURARITY™


Test condition: heat-rate: 10°C/min

Tested by Kuraray

N ₂	LA2250	LA4285	LA2330	LA3710
5% Weight loss temp.	316°C	315°C	299°C	340°C
99% Weight loss temp.	445°C	435°C	545°C	448°C

Air	LA2250	LA4285	LA2330	LA3710
5% Weight loss temp.	276°C	278°C	293°C	315°C
99% Weight loss temp.	528°C	507°C	551°C	518°C



Recommended antioxidants

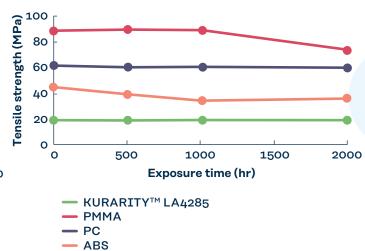
To prevent yellowing due to heat, using two types of antioxidants together is recommended.

(1) Hindered phenol type	0.05 - 0.10 (phr)		
(2) Phosphite type	0.05 - 0.10 (phr)		

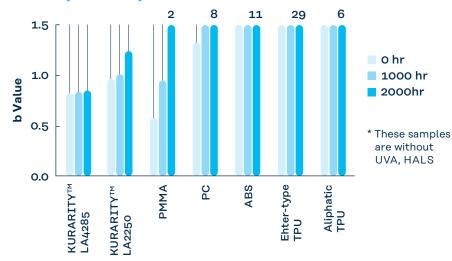
Heat stability test

Sample	Formulation	Results
o	LA2330	Turned yellow
1	LA2330 + (1) 0.05phr + (2) 0.05phr	Slightly improved
2	LA2330 + (1) 0.10phr + (2) 0.10phr	Good transparency

Weatherability of KURARITY™


Tensile Strength (ISO37)

Ether-type TPU


— Aliphatic-TPU

30 Tensile strength (MPa) 20 0 500 1000 1500 2000 0 Exposure time (hr) — KURARITY™ LA2250

Tensile Strength (ISO527-2)

Color (b Value)

Test method: ISO4892-4 (SWOM)

BPT: 63°C

Exposure intensity: 255W/m2

(300 nm - 700 nm)

Exposure time: 500hr, 1,000hr, 2,000hr

Injection molded test specimen

Tested by Kuraray

0 hr

1000 hr

2000hr

Moisture absorption of KURARITY™

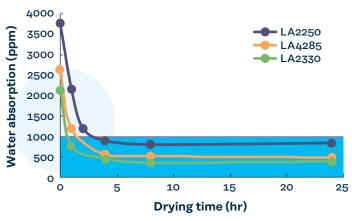
Recommended water absorption value of KURARITY™ is under 1,000 (ppm) for molding.

Drying Test

Test Specimens: Pellet

Test Conditions: Drying in air circulating oven dryer

LA2330, LA2250: 60°C

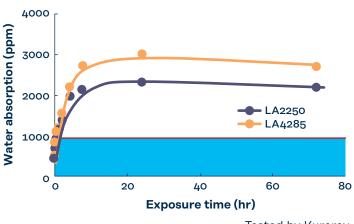

LA4285: 70°C

Blocking might be occurred after drying

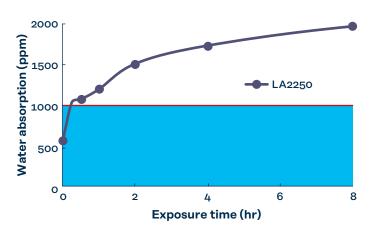
depending on the grades.

Adding silica in 0.01 - 0.1 (phr) is recommended to

prevent blocking.


Tested by Kuraray

Moisture Absorption Test


Test specimens: Pellet

Test conditions: 25°C, 50% RH

* Moisture content at drying time = Ohr is reference value.

Tested by Kuraray

Tested by Kuraray

The mechanical properties are largely unaffected by water absorption, though its appearance might be observed as opaque when it contains more water. Opaque disappears when dried.

Chemical resistance of KURARITY™

	Visual Check
Acids (H ₂ SO ₄ : 0.1N)	+
Alkaline solution (NaOH: 0.1N)	+
Hand cream	+
Castor oil	+
Gasoline	+
Kerosene	+
Oleic acid	-
Engine oil (Mineral oil)	+
Wax (liquid type: Alcohol 10%)	+
Ethanol aqueous solution (50wt%)	+
Methanol	-
Ethanol	-
Brake fluid (Glycol ether: 99%)	-

Test Method

The aforementioned chemical is soaked into cotton cloth, then wiped 8 times-RT*24hr-80°C *1hr

+ = No changes observed

- = Changes of visual observed

Tested by Kuraray

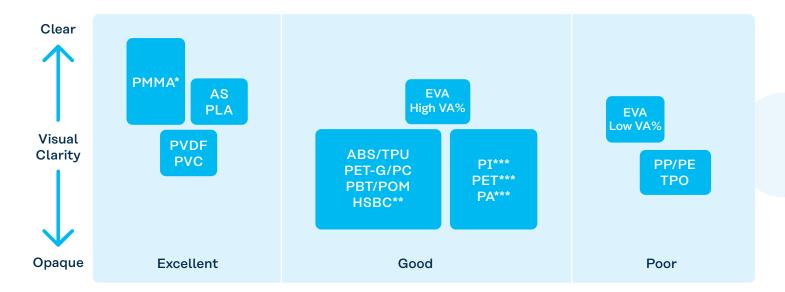
Painting and printing properties of KURARITY™

	KURARITY™ LA4285	РММА
Painting**	+	+
Printing (Inkjet print:UV type)	+	+
Pad printing (UV Type)	+	+
Hard Coating (for Scratch Resistance)	+	+
Coating (Vacuum deposition) Al, Cr, Sn, SiO2, ITO	+	-
Dyeing***	+	+

^{*} The coating materials may crack depending on their flexibility.

Overmolding with other thermoplastics with KURARITY™

	Double Injection with KURARITY™	Co-Extrusion with KURARITY™
РММА	+	+
PC	+	+*
PET-G	+	+
ABS	+	+
PS	+	+
PVC	+	+
TPU	+	+
РВТ	-	-
POM	-	-
PET	-	_*
PA	-	_*
PE	-	-
PP	-	-


^{*} Proper equipment and processing parameter adjustments are required since the processing temperature of these resins are widely different from KURARITY™.

Tested by Kuraray

^{**} Acrylic urethane paints have proven well suited.

^{***} Pigments (organic or inorganic) have proven well suited.

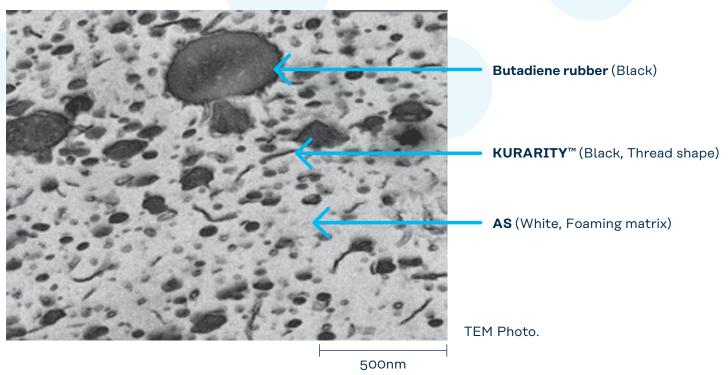
KURARITY[™] as resin modifier

^{*} Mixing with lower MVR(MFR) MMA causes opaque appearance.

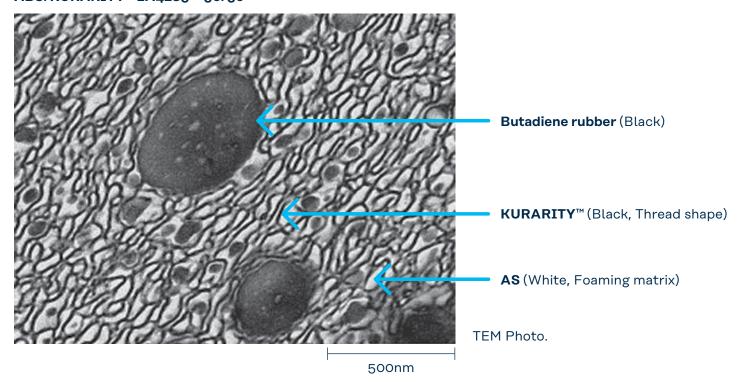
For mixing with low vinyl type HSBC, proper compatibilizer should be selected.

The figures should be regarded as guide values only and not as binding minimum values.

ABS				100	90	80	50						
PMMA								100	90				
PET-G										100	95		
AS												100	90
KURARITY™ LA42	285				10	20	50		10		5		10
	Method		Unit										
Tensile Strength	ISO 527-	2	(MPa)	34	32	30	23	60- 80	57	40	44	72	72
Tensile Elongation	ISO 527-	2	(%)	12	12	12	47	2-7	16	6	5	3	3
Flexural Modulus	ISO 178		(MPa)	2486	2303	2116	1404	3300	3145	1935	1899	3546	3301
Charpy Impact	ISO 179 (notched:	: 1eA)	(kJ/m²)	19.7	21.8	27.0	43.0	1.4	1.2	7.3	10.9	1.1	0.9
	ISO	Type A	(-)	91	90	89	88	95<	91	91	91	90	91
Hardness	7619-1	Type D	(-)	77	76	72	62	85- 90	86	76	74	84	83
Specific Gravity	ISO 1183	;	(-)	1.04	1.05	1.05	1.08	1.19	1.18	1.27	1.27	1.07	1.07
MFR	ISO 1133 (230°C 2.		(g/ 10min)	1.8	2.4	3.8	8.5	1.1	1.7	8.1	11.7	2.0	2.8
DTUL	ISO 75-1 (0.45MPa	-	(°C)	102	101	101	97	98	99	72	71	102	101
Vicat Softening Point	ISO 306 (B50 Ann	ealed)	(°C)	102	100	97	79	112	107	74	73	103	102


^{**} High vinyl type HSBC shows good compatibility with KURARITY $^{\text{\tiny{TM}}}$.

^{***} Because of higher mixing temperature, attention should be paid to avoid degradation of KURARITY™.


KURARITY[™] as resin modifier

Example – Adding KURARITY™ to ABS

ABS/KURARITY™ LA4285 = 90/10

ABS/KURARITY™ LA4285 = 50/50

Standard injection molding conditions of KURARITY™

KURARITY™ is hydrophilic. Pre-drying is recommended to ensure the highest molding quality and consistency. Excessive moisture causes streaking, bubbles, loss of clarity, etc., although the mechanical properties are largely unaffected by water absorption. Circulating air ovens or vacuum oven dryers are recommended. A vented barrel and screw is satisfactory alternative to pre-drying.

LA2250: 60°C, more than 4 hours LA4285: 70-80°C, more than 4 hours

Without drying

With drying

Cleaning

All traces must be fully purged with polypropylene or polyethylene.

Feeding

Poor feeding might occur depending on the grades. Recommended agents to improve feeding are as follows.

Trouble	Detail	Recommend Agent
5% Weight loss temp.	Pellets tend to agglomerate due to the tackiness of the pellets.	Silica 0.01- 0.1 (phr)
Hopper Bridging	Pellets can bridge around the lower side of the hopper or the entrance of the molding machine due to the weight of the pellets.	Etylene bis stearamide 0.01-0.1 (phr)
Poor biting by screw	Pellets are agglomerated by shear stress between the screw and the barrel.	Etylene bis stearamide 0.01-0.1 (phr)

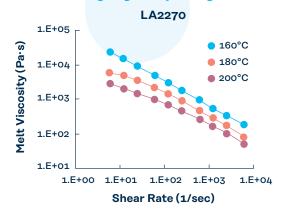
Demolding

The following slip agents have proven suitable to protect components with highly smooth surface from scratches as well as to reduce tackiness of components.

Zinc stearate 0.01-0.05 (phr) Ethylene bis oleic amide 0.01-0.05 (phr)

Trouble	LA2250	LA4285
Cylinder Temperature (°C)	160-200	200-230
Mold Temperature (°C)	20-40	20-40
The bottom of hopper	Water cooling	Water cooling
Screw Revolution (rpm)	<100	<100
Back Pressure (kgf/cm2)	0-50	0-50

Standard extrusion molding conditions of KURARITY™


Processing Parameters

	Hopper	Feeding zone	Compression zone	Metering zone	Adapter	Die Head
LA2270	Water Cooling (down to 40°C)	100 ~ 130°C	140 ~ 160°C	150 ~ 170°C	150 ~ 170°C	150 ~ 170°C

Single screw extruder with the following specs is recommended;

- Machines using TPU, PVC
- 5 Full-flighted screw, L/D=24-28, compression ratio= 2.5 3.1

Melt Viscosity by Capilary Flow Tester

Drying

KURARITY™ must be dried prior to processing when using non-vented extruder.

LA2250: 60°C, 4 hours

LA4285: 70~80°C, more than 6 hours

Feeding

Poor feeding might occur depending on the grades. Recommended agents to improve feeding are as follows.

Trouble	Detail	Recommended Agent
Blocking	Pellets tend to agglomerate due to the tackiness of the pellets.	Silica 0.01- 0.1 (phr)
Hopper bridging	Pellets can bridge around the lower side of the hopper or the entrance of the molding machine due to the weight of the pellets.	Etylene bis stearamide 0.01-0.1 (phr)
Poor biting by screw	Pellets are agglomerated by shear stress between the screw and the barrel.	Etylene bis stearamide 0.01-0.1 (phr)

- The screen pack should consist of two 80 and 100 mesh screens to remove any impurities that may damage the die, and also to ensure sufficient back pressure.
- A water cooling bath (5~30°C) is recommended for the cooling of KURARITY™.
 - *Air cooling or shower may give insufficient cooling, and also generate vibrations that may cause defects in appearance.
- The edge and inner surface of the die should be well-finished to achieve high-quality appearance.

Examples of Die Polishing

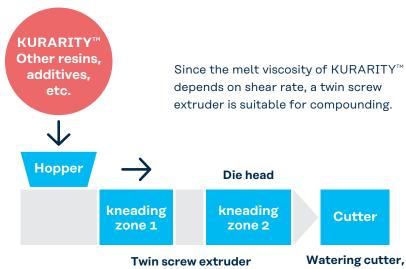
When switching from other resins, dismantling and cleaning of the extruder screw and die components is recommended to prevent contamination. Purging with polypropylene or polyethylene is recommended to remove residual $KURARITY^{TM}$ in the extruder.

Standard compounding conditions of KURARITY™

Pre-drying is required if your twin screw extruder is not vented.

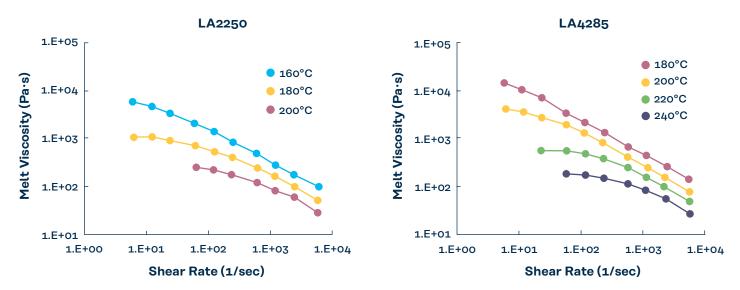
An air circulating oven dryer or vacuum oven dryer is recommended.

LA2250: 60°C, 4 hours


LA4285: 70-80°C, more than 6 hours

Example of compounding process parameters

Equipment: TEX 44XCT Twin Screw Extruder (JSW)


Screw diameter: 44mm, L/D=42 Barrel temperature: C2 50°C

C3 - C12 170 - 230°C Die head 170 - 230°C Screw rotation: 200 rpm

Watering cutter, under water cutter, strand cutter, etc.

Melt viscosity by capillary flow tester

Feeding

Poor feeding might occur depending on the grades. Recommended agents to improve feeding are as follows.

Trouble	Detail	Recommended Agent
Blocking	Pellets tend to agglomerate due to the tackiness of the pellets.	Silica 0.01- 0.1 (phr)
Hopper bridging	Pellets can bridge around the lower side of the hopper or the entrance of the molding machine due to the weight of the pellets.	Etylene bis stearamide 0.01-0.1 (phr)
Poor biting by screw	Pellets are agglomerated by shear stress between the screw and the barrel.	Etylene bis stearamide 0.01-0.1 (phr)

Adding value to your products—worldwide

Kuraray is a world leader in specialty chemicals and functional materials. We are committed to developing products that ensure quality and value while helping our customers differentiate themselves from their competition.

Kuraray's Elastomer Division started in 1972 with the production of polyisoprene rubber and the development of new rubber materials based on Isoprene in the Kashima Plant. From the first production line, the Elastomer Division continuously grew and invented new products such as KURARAY LIQUID RUBBER, ISOBAM $^{\text{\tiny TM}}$, SEPTON $^{\text{\tiny TM}}$, HYBRAR $^{\text{\tiny TM}}$, and KURARITY $^{\text{\tiny TM}}$.

Kuraray strives to develop new and innovative highperformance products for customers around the globe. Learn more about Kuraray's Elastomer products, visit elastomer.kuraray.com.

Kuraray Co., Ltd.

Tokiwabashi Tower 2-6-4, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

P +81 3 6701 1616

kuraray.liquidrubber@kuraray.com

Kuraray Trading (Shanghai) Co., Ltd.

3 Hongqiao Road, Xuhui District Shanghai 200030, China

P +86 21 6407 9182

o elastomer.china@kuraray.com

Kuraray Europe GmbH

Philipp-Reis-Straße 4 65795 Hattersheim am Main Germany

P +49 69 305 85300

elastomer@kuraray.com

Kuraray India Private Limited

Prius Platinum 2nd Floor B Wing, D3 District Centre Saket New Delhi -110017, India

P +91-11-4090-4400

o inquiry.kid@kuraray.com

Kuraray America, Inc.

3700 Bay Area Blvd., Suite 680 Houston, Texas 77058 United States of America

P 1.800.423.9762

septon.sales@kuraray.com

Kuraray South America Ltda.

Av. Paulista, 1636 - Sala 405 01310-200 Sao Paulo, Brasil

P +55-11-2615-3531

🧿 elastomer.sa@kuraray.com

© Kuraray Co., Ltd. 2023

SEPTON, HYBRAR, KURARITY and ISOBAM are trademarks or registered trademarks of Kuraray Co., Ltd. Trademarks may not be applied for or registered in all countries.

Disclaimer: The information provided herein corresponds to Kuraray's knowledge on the subject at the date of its publication. This information may be subject to revision as new knowledge and experience becomes available. The information provided falls within the normal range of product properties and relates only to the specific material designated; this data may not be valid for such material used in combination with any other materials or additives or in any process, unless expressly indicated otherwise. The data provided should not be used to establish specification limits or used alone as the basis of design; they are not intended to substitute for any testing you may need to conduct to determine for yourself the suitability of a specific material for your particular purposes. Final determination of suitability of any material or process and whether there is any infringement of patents is the sole responsibility of the user. Since Kuraray cannot anticipate all variations in actual end-use conditions, Kuraray makes no warranties and assumes no liability in connection with any use of this information.

