KURARITY ${ }^{\text {™ }}$ transparent compounds and recommended additives

KURARITY business promotion dept.
Elastomer Division
kurəray Kurarity"

KURARITY ${ }^{\text {M }}$ transparent compounds

\checkmark We have three grades of KURARITY ${ }^{\top M}$ among hardness 50-95A.
\checkmark By compounding different grades of KURARITY ${ }^{\top M}$, the hardness of KURARITY ${ }^{\top M} / P M M A$ can be adjusted.

KURARITY ${ }^{\text {T }}$ soft \& transparent compounds

KURARITY ${ }^{\text {™ }}$ LA2250				100	50					
KURARITY ${ }^{\text {™ }}$ LA2270						100	70	50	30	
KURARITY ${ }^{\text {T }}$ LA4285					50		30	50	70	100
Items	Methods	Conditions	Units							
Hardness type A	ISO 7619-1	After 15 sec	-	55	78	62	66	73	79	95
Specific gravity	ISO 1183	-	-	1.08	1.10	1.10	1.10	1.10	1.11	1.11
MFR	ISO 1133	$\begin{gathered} 190 \mathrm{degC} \\ 2.16 \mathrm{kgf} \end{gathered}$	$\mathrm{g} / 10 \mathrm{~min}$	25	3.8	4.4	3.1	2.7	2.1	1.5
		$\begin{gathered} 230 \text { deg.C } \\ 2.16 \text { kgf } \end{gathered}$		330	68	80	57	49	43	31
Strength at break	ISO 37	$500 \mathrm{~mm} / \mathrm{min}$	MPa	9.0	12	12	16	17	17	19
Elongation at break			\%	380	190	230	300	270	210	140
100\% Modulus			MPa	3.7	9.1	9.0	10	11	13	19
Flexural modulus	ISO 178	$3 \mathrm{~mm} / \mathrm{min}$	MPa	---	100	180	320	500	620	650
Transmittance	ISO 13468-1	3 mmt	\%	92	92	92	92	92	92	92
Haze	ISO 14782	3 mmt	\%	2.0-6.0*	2.0-3.5*	1.0	1.0	1.0	1.0	1.0

* The HAZE values are normally worse due to the anti-blocking agent dusted onto LA2250.
\checkmark By compounding different grades of KURARITY™, mechanical properties can be adjusted

KURARITY™ / PMMA compounds

KURARITY ${ }^{\text {™ }}$ LA4285				100	70	70	50		
PARAPET ${ }^{\text {TM }}$ GF (High flow grade)					30			100	
PLEXIGLAS® ${ }^{\circledR} 8 \mathrm{~N}$ (Standard grade)						30	50		100
Items	Methods	Conditions	Units						
Hardness type D	ISO 7619-1	After 15 sec	-	46	62	61	66	85-90	91
Specific gravity	ISO 1183	-	-	1.11	1.13	1.13	1.15	1.19	1.19
MFR	ISO 1133	$\begin{gathered} 230 \text { deg.C, } \\ 3.8 \mathrm{kgf} \end{gathered}$	$\mathrm{g} / 10 \mathrm{~min}$	72	37	28	15	15	3
Strength at break	ISO 527-2	$50 \mathrm{~mm} / \mathrm{min}$	MPa	19	30	28	40	67	89
Elongation at break			\%	140	50	41	30	3.0	5.5
Flexural modulus	ISO 178	$3 \mathrm{~mm} / \mathrm{min}$	MPa	650	1400	1100	1650	3300	3300
Transmittance	ISO 13468-1	3 mmt	\%	92	92	91	90	93	93
Haze	ISO 14782	3 mmt	\%	1.0	1.0	1.2	2.0	0.3	0.4
							RAPET is EXIGLAS	ed tradem tered trade	raray Co. Röhm Gm

\checkmark By adding PMMA to KURARITY ${ }^{\top M}$ LA4285, hardness can be adjusted with good transparency.
\checkmark Using high flow grade can lower haze value.

Standard compounding conditions

1. Preparation

	LA2250	LA2270	LA4285	PMMA
Pre-drying	60 deg.C more than 4hr	60 deg.C more than 6hr	70-80 deg.C more than 6hr	Depends on grade (ex: 8odeg.C 6hr)
Pre-blend	Henschel type ${ }^{* 1}$	Tumbler type or Henschel type		

*1) The granules of LA2250 can be aggregated.

- KURARITY ${ }^{\top M}$ should be dried in an air circulation oven dryer or vacuum oven dryer.
- Using vent type extruder, no necessary for drying.

2. Compounding

Equipment:
Twin Screw Extruder ($65 \mathrm{~mm} \varphi$, L/D=32) Cutting: Strand cut
KURARITY ${ }^{\text {TW }}$ soft compound needs
to use the anti-blocking agent.
Recommendation: EBS (Emulsion aq.)

	KURARITY ${ }^{\text {™ }}$ soft compound	KURARITY ${ }^{\text {TM }} /$ PMMA compound
C1	50 deg.C	50 deg.C
C2	150 deg.C	170 deg.C
C3-C5	170 deg.C	190 deg.C
Die head	220 deg.C	230 deg.C
Screw Rotation	200 rpm	200 rpm
Out put	$250 \mathrm{~kg} / \mathrm{hr}$	$250 \mathrm{~kg} / \mathrm{hr}$

Standard injection molding conditions

Formulations	LA2250 / LA4285 $=50 / 50$	LA2270 / LA4285 $=50 / 50$	LA4285 $=100$	LA4285/PMMA $=70 / 30$
Pre-drying	60 deg.C more than 4hr	60 deg.C more than 6 hr	$70-80$ deg.C more than 6 hr	$70-80$ deg.C more than 6 hr
Cylinder temp. [deg.C]	$180-200$	$190-220$	$200-230$	$210-240$
Mold temp. [deg.C]	$20-40$	$20-40$	Water cooling	Water cooling
The bottom of hopper	Water cooling	<100	Water cooling	<100

- KURARITY ${ }^{\top M}$ should be dried in an air circulation oven dryer or vacuum oven dryer.

Recommended additives

-Demolding agent: Zinc stearate 0.01-0.05 phr
-Slipping agent**: N,N'-Ethylene bis(oleic amide) 0.01-0.05 phr
*) Slipping agent have proved suitable to protect components with highly smooth surface from scratches as well as to reduce tackiness of components.

Advantages of KURARITY™ for filler compounds

Features of KURARITY™
Advantages as filler compounds

KURARITY ${ }^{\text {TM }} / \mathrm{TiO}_{2}$ compounds

KURARITY ${ }^{\text {TM }}$ LA2250				100	50	30			
KURARITY ${ }^{\text {™ }}$ LA3320							100	50	30
TiO_{2} (Ishihara Sangyo Kaisha, CR-90, $0.25 \mu \mathrm{~m}$)					50	70		50	70
Items	Methods	Conditions	Unit s						
Hardness type A	ISO 7619-1	After 15 sec	-	55	65	75	14	28	50
Specific gravity	ISO 1183	-	-	1.08	1.47	1.76	1.06	1.46	1.75
Strength at break	Kuraray In-house method	$500 \mathrm{~mm} / \mathrm{min}$, 1 mmt , Strain between chucks	MPa	11	11	10	7.1	6.7	7.2
Elongation at break			\%	920	430	120	1700	970	430
100\% Modulus			MPa	1.8	4.0	9.7	0.21	0.47	1.7
Transmittance	ISO 13468-1	$\begin{gathered} 1 \mathrm{mmt} / 0.3 \\ \mathrm{mmt} \end{gathered}$	\%	92 / 92	0.0 / 0.3	0.0 / 0.2	92 / 92	0.0 / 0.4	0.0 / 0.2

Compounding conditions: Kneading: Kneader temp.: 140-160 degC, Pelletizing: Extruder temp.: 130-140 degC Injection molding temp.: 150-160 degC
\checkmark KURARITY ${ }^{\text {TM }}$ can make highly filled compounds without losing flexibility.
\checkmark Highly filled KURARITY™ $/ \mathrm{TiO}_{2}$ sheet showed low transmittance value with < 1mmt thickness.

KURARITY $^{\text {M }} / \mathrm{Al}(\mathrm{OH})_{3}$ compounds

KURARITY ${ }^{\text {TM }}$ LA2250				100	50	30			
KURARITY ${ }^{\text {T }}$ LA3320							100	50	30
$\mathrm{Al}(\mathrm{OH})_{3}$ (Nippon Light Metal Company, BFO13, $1 \mu \mathrm{~m}$)					50	70		50	70
Items	Methods	Conditions	Units						
Hardness type A	ISO 7619-1	After 15 sec	-	55	81	92	14	42	77
Specific gravity	ISO 1183	-	-	1.08	1.71	2.19	1.06	1.68	2.15
Strength at break	ISO 37	$500 \mathrm{~mm} / \mathrm{min}$, 1 mmt	MPa	11	8.5	8.3	7.1	4.6	3.3
Elongation at break			\%	920	220	60	1700	670	250
100\% Modulus			MPa	1.8	7.5	---	0.21	1.2	3.2
Flammability	UL-94 V	1 mmt	-	none	V-2	V-O	none	V-2	V-O

Compounding conditions: Kneading: Kneader temp.: 140-160 degC, Pelletizing: Extruder temp.: 130-140 degC Injection molding temp.: 150-160 degC
\checkmark KURARITY ${ }^{\text {TM }}$ can make highly filled compounds without losing flexibility.
\checkmark KURARITY ${ }^{T M}$ can compound at low temperature (< 200deg.C), $\mathrm{Al}(\mathrm{OH})_{3}$ can be used as flame retardant.

Example of KURARITY™ / filler compounds

Filler	Particle size $[\mu \mathrm{m}]$	Specific gravity	Addition amount $[w t \%]$	Example of provided character
by filler				

Stabilizers for KURARITY™

\checkmark Any anti oxidants are not applied to KURARITY ${ }^{\mathbb{T 1}}$ in production since the weatherability of KURARITY ${ }^{\mathbb{T 1}}$ is excellent. .
\checkmark In general, additives are not required. Just in case of using KURARITY ${ }^{\mathbb{M}}$ in a severe circumstance, it is recommended to use the above two anti oxidants to prevent coloring under long-term heat exposure. (in extruders, tanks of hot-melt coaters) Our experience tells to use them both at once in order to maximize the anti oxidant effects.
\checkmark In addition to the anti oxidants, adding the UVA and HALS like the above will reinforce the excellent weatherability of KURARITY ${ }^{\text {TM }}$

Other applicable additives for KURARITY™

	Recommendation	Amount	CAS No.	
Anti-Blocking Agent	$\begin{gathered} \text { ALFLOW® H-50T } \\ \text { (NOF CORPORATION) } \end{gathered}$	0.03-0.1 phr	110-30-5	
	N,N'-Ethylenebis(stearamide)			
Demoulding	Zinc stearate	0.01-0.05 phr	557-05-1	wumpianMuN
Slipping Agent	SLIPACKS O (Nippon Kasei Chemical Co., Ltd.)	0.01-0.05 phr	110-31-6	
	N,N'-Ethylenebis(oleic amide)			

\checkmark The ALFLOW ${ }^{\circledR}$ is already applied to KURARITY ${ }^{\text {TM }}$ LA2140e,LA2330 and LA2250. No anti-blocking agents are applied to LA1114 and LA4285.
\checkmark You can add the above recommended amount of the anti-blocking agent in case you need to reinforce the anti-blocking performance of KURARITY ${ }^{\text {™ }}$.
\checkmark Experience has shown that the demolding agent helps to demold molded components without loosing smooth surface of the components.
\checkmark The slipping agent is recommended in case you feel the surface of the molded components is sticky. This slipping agent is also useful to protect the surface from scratches by certain degrees.

Silicone based additive to improve abrasion resistance

*GENIOPLAST® is from Asahi Kasei Wacker Silicone Co., Ltd GENIOPLAST is a registered trademark of Wacker Chemie AG
Injection molding conditions: Temp. $=210$ deg.C , $V=20 \mathrm{~mm} / \mathrm{s}$, mold $=150 \mathrm{~mm}^{*} 100 \mathrm{~mm}$ *2 mmt

Kuraray Co., Ltd.

Elastomer Division

Tokiwabashi Tower

2-6-4, Otemachi

Chiyoda-ku, Tokyo, 100-0004, Japan

- elastomer@kuraray.com
\rightarrow www.kuraray.com
\rightarrow www.elastomer.kuraray.com
© Kuraray Co., Ltd. 2022
Precautions should be taken in handling and storage. Please refer to the appropriate Safety Data Sheet for further safety information. In using KURARITY™, please confirm related laws and regulations, and examine its safety and suitability for the application.
For medical, health care and food contact applications, please contact your Kuraray representative for specific recommendations. Even so, users must conduct their own assessment, revisions, registrations as well rely in their own technical and legal judgment to establish the safety and efficacy of their compound and/or end product KURARITY ${ }^{\top m}$ for any application. KURARITY ${ }^{\text {TM }}$ should not be used in any devices or materials intended for implantation in the human body. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.
KURARITY is a registered trademark or trademark of Kuraray Co., Ltd.

kurəray Kurarity"

