KURARITY™ sustainable

 formulationsKURARITY business promotion dept.
Elastomer Division

Sustainable solutions using KURARITY™

<Base Polymer>
<What is the value added ?>
<Solutions / values>

KURARITY™ as "MAM" structure
-> Made by controlled living anionic polymerization
<Features>
High polarity
High flow-ability
Overmolding to polar resins

KURARITY™ / wood powder formulations

- Good dispersion and flexibility

KURARITY™ / PLA formulations

- High transparency
- Low stickiness

SEPTON™ BIO-series
/ KURARITYTM
formulations

- Good haptics (rubber like)
- Overmolding to polar resins

KURARITY ${ }^{\text {™ }} /$ Wood Powder (WP) formulations

Fig. Injection molding sample (LA2250 / WP = 50 / 50)
Fig. Basic properties

\checkmark KURARITY ${ }^{\text {TM }}$ could be compounded with WP by twin screw extruder.
\checkmark KURARITY ${ }^{\top M} / W P=50 / 50$ shows flexible feature and better tensile elongation than PP / WP.

KURARITY ${ }^{\text {TM }}$ / PLA formulations

				Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7	Ex. 8	Ex. 9
KURARITY ${ }^{\text {™ }}$		LA2250		70	50					35	25	
		LA4285				70	50			35	25	35
		KL-LH8156						70	50			35
PLA		PLA (MFI* $=6$)		30	50	30	50	30	50	30	50	30
	Bio-based conte	[wt\%]		30	50	30	50	30	50	30	50	30
Items	Methods	Conditions	Units									
Hardness	ISO 7619-2	after 15 sec	-	61	73	92	93	55	74	74	83	74
Transmittance	ISO 13468-1	1 mmt		75	74	92	89	76	73	89	84	89
Haze	ISO 14782			41	49	2.9	5.5	34	48	4.7	12	4.5
MFR	ISO 1133	230 deg.C, 2.16 kgf	$\mathrm{g} / 10 \mathrm{~min}$	55	33	4.6	4.6	34	21	8.1	7.2	9.6
Tensile modulus	ISO 37	$500 \mathrm{~mm} / \mathrm{min}$	MPa	14	29	1400	1500	11	39	280	530	220
Tensile strength at break			MPa	11	17	25	28	14	18	19	22	19
Tensile elongation at break			\%	210	81	80	9.2	280	200	210	63	190
Adhesion to polar resins (Molded at 250 deg.C)	In-house method	to PC	N/25 mm	17	23	65	100	9	17	46	42	42
		to ABS		21	21	90	101	10	13	45	49	43
		to PMMA		59	40	142	108	12	22	56	50	57

* 210 deg.C, 2.16 kgf
\checkmark KURARITY ${ }^{\text {TM }} /$ PLA formulation can be adjusted wide hardness range.
\checkmark Especially using LA4285 formulations (e.g.: Ex. 3, 4, 7, 9) show good adhesion to polar resins and transparency.
kuraray Kurarity ${ }^{\text {m }}$

SEPTON ${ }^{\text {M }}$ BIO-series / KURARITY ${ }^{\text {M }}$ formulations

				Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7	Ex. 8
SEPTON ${ }^{\text {TM }}$ BIO-series	SF902			25	25						
	SF904					40	40	40	30	40	40
Olefins	Bio-LDPE (MFI* $=30$)			15	15	10	10	10	20	10	10
	Random PP ($\mathrm{MFI}^{* *}=45$)			10	10						
KURARITY ${ }^{\text {m }}$	LA2250			50	12	50	12		12	11	
	LA4285				38		38	50	38	34	34
	KL-LH8156										11
Compatibilizer	PELESTAT $T^{T M} 300$ (Modified polyolefin-PEG block copolymer)									5	5
Bio-based content [wt\%]				34.3	34.3	29.5	29.5	29.5	34.0	29.5	29.5
Items	Methods	Conditions	Units								
Hardness	ISO 7619-2	after 15 sec	-	66	82	59	63	71	70	69	68
MFR	ISO 1133	230 deg.C, 2.16 kgf	$\mathrm{g} / 10 \mathrm{~min}$	92	35	30	30	30	30	17	17
Tensile strength at break	ISO 37	$500 \mathrm{~mm} / \mathrm{min}$	MPa	9.1	13	7.1	9.1	10	10	8.7	8.8
Tensile elongation at break			\%	340	240	430	240	190	200	310	320
Adhesion to polar resins (Molded at 250 deg.C)	In-house method	to PC	N/25 mm	10	7.7	56	19	12	11	25	71
		to ABS		14	20	64	39	14	13	48	68
		to PMMA		13	17	64	22	12	12	30	45

\checkmark SF902 based formulations (Ex.1,2) tend to be hard and difficult to adhere on polar resins.
\checkmark Some SF904 based formulations (Ex.3, 8) show good adhesion to polar resins and haptics.

|kuraray Kurarity ${ }^{\text {m }}$

Kuraray Co., Ltd.

Elastomer Division

Tokiwabashi Tower

2-6-4, Otemachi

Chiyoda-ku, Tokyo, 100-0004, Japan
\square elastomer@kuraray.com

```
\(\rightarrow\) www.kuraray.com
\(\rightarrow\) www.elastomer.kuraray.com
```

© Kuraray Co., Ltd. 2022
Precautions should be taken in handling and storage. Please refer to the appropriate Safety Data Sheet for further safety information. In using SEPTON ${ }^{\mathrm{TM}}$, HYBRAR ${ }^{\mathrm{TM}}$ and KURARITY ${ }^{\mathrm{TM}}$, please confirm related laws and regulations, and examine its safety and suitability for the application.
For medical, health care and food contact applications, please contact your Kuraray representative for specific
recommendations. Even so, users must conduct their own assessment, revisions, registrations as well rely in their own technical and legal judgment to establish the safety and efficacy of their compound and/or end product with SEPTON ${ }^{\text {mM, HYBRAR }}$, ${ }^{\text {m }}$ and KURARITY ${ }^{\text {TM }}$ for any application. SEPTON ${ }^{T M}$, HYBRAR ${ }^{\text {TM }}$ and KURARITY ${ }^{T M}$ should not be used in any devices or materials intended for implantation in the human body. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.
KURARITY is a registered trademark or trademark of Kuraray Co., Ltd.

