Introduction of KURARITY™ and polyester polymer compounds

KURARITY business promotion dept.
Elastomer Division

Advantages of KURARITY ${ }^{\text {TM }}$ and polyester polymer compounds

KURARITY ${ }^{\text {TM }}$ as a modifier of PBT

Overviewing of our new solution with KURARITY ${ }^{\text {M }}$ (Compare with conventional system)

	Flow-ability	Impact resistance
PBT /KURARITY™ compounds	+	+
(New solution)	+	-
(Conventional solution)	+	

Compare with conventional PBT high flow grades,
Our new solution is;
\checkmark (+-) Same levels or good flow ability
\checkmark (+) Excellent impact resistance

Overviewing of our new solution with KURARITY™ (Compare with conventional system)

*250 deg.C, 2.16 kgf
**MEIKI M100C, Injection temp.: 260 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa , Injection rate: $50 \mathrm{~mm} / \mathrm{sec}$
\checkmark Ex. 1 and Ex. 2 show same levels or higher flow ability than PBT high flow grade as Ref.2.
\checkmark Ex. 1 to Ex. 3 show higher impact resistance than Ref. 1 and Ref.2.

KURARITY ${ }^{\text {M }} /$ polyester soft compounds

Overviewing of our new solution with KURARITY ${ }^{\text {M }}$ (Compare with conventional system)

	Flow-ability	Adhesion to polar resin	Paint-ability	Oil resistance (except Oleic acid)
Crystalline Polyester / KURARITY ${ }^{\text {m }}$ compounds (New solution 1)	++	+-	++	++
Amorphous Polyester / KURARITY ${ }^{\text {TM }}$ compounds (New solution 2)	++	+	++	+
TPC or TPC / TPS compounds (Conventional)	+-	++	+-	+-

Compared with conventional TPC (Ihermo-Plastic Co-polyester elastomer)
or TPC / TPS (Ihermo-Plastic poly-Styrene elastomer) compounds, Our new solution is;
$\checkmark(-)$ Moderate or low adhesion force to polar resin
\checkmark (+) Excellent flow-ability, paint-ability and Oil resistance

TEM image

\checkmark Amorphous Polyester / KURARITY ${ }^{\text {TM }}$ formulation shows better dispersion compared with Crystalline Polyester / KURARITY™

Typical properties

			Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5
PBT (Standard grade, MFI = 21*)			50				
PET-G (Injection molding grade)				30	30		
KURARITY ${ }^{\text {T }}$ LA2250			50	70	50		
KURARITY ${ }^{\text {T }}$ LA4285					20		
TPC						100	
TPC / TPS compound							100
Items	Method	Units					
ISO type A (after 15 sec)	ISO 7619-1	-	80	65	79	77	77
MFR (230 deg.C, 2.16 kgf)	ISO 1133	$\mathrm{g} / 10 \mathrm{~min}$	70	190	90	31	12
Flammability (UL-94)	ASTM D635	-	HB	HB equivalent	HB equivalent	HB	HB equivalent
							deg.C, 2.16 kgf

\checkmark KURARITY ${ }^{\top M}$ shows good compatibility with PBT and PET-G without any compatibilizer.
\checkmark Ex. 1 to EX. 3 show higher flow-ability than TPC and TPC based compound.

Typical properties

				Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5
PBT (Standard grade, MFI = 21*)				50				
PET-G (Injection molding grade)					30	30		
KURARITY ${ }^{\text {M }}$ LA2250				50	70	50		
KURARITY ${ }^{\text {™ }}$ LA4285						20		
TPC							100	
TPC / TPS compound								100
Item	Units		Molding temp.					
Adhesion to polar resin	$\mathrm{N} / 25 \mathrm{~mm}$	to ABS	230 deg.C	6.5	>60	>54	68	29
			250 deg.C	23	>92	>77	No data	No data
		to PC	230 deg.C	5.3	>68	19	>200	>140
			250 deg.C	20	>87	>100	No data	No data
*250 deg.C, 2.16 kgf								

\checkmark Ex. 2 and Ex. 3 show moderate adhesion to polar resin compared with Ex. 4 and Ex. 5.
\checkmark Ex. 1 should be molded higher temperature.

Paint-ability

\checkmark Polyester / KURARITY ${ }^{\text {TM }}$ compounds show better paint-ability

Test Piece: 60 mm W x $60 \mathrm{~mm} \mathrm{D} \times 2 \mathrm{~mm}$ T Injection Molded,
Coating Material: Planet PX-1 Silver / Polyhard MH / Thinner \#210=4/1/2, Origin Electric Co. Ltd. product Drying Condition: 70 deg.C $\times 60 \mathrm{~min}$
Adhesion test (Cross-cut test): Number of cuts $=10 \times 10$ (1 mm) (Kuraray method)
Classification: O (excellent adhesion) - 5 (poor adhesion) (ISO 2409)

Chemical resistance

				Ref. 4	Ref. 5	Ex. 4	Ex. 5	Ex. 6
PBT (Standard grade, MFI = 21*)						50		
PET-G (Injection molding grade)							30	30
KURARITY ${ }^{\text {TM }}$ LA2250						50	70	50
KURARITY ${ }^{\text {TM }}$ LA4285								20
TPC				100				
TPC / TPS compound					100			
Items	Methods	Conditions	Units					
Lubricating Oil	In-house method (Immersed)	65 deg.C, 24 hr	$\Delta w t$ \%	8.5	38	2.4	4.3	3.4
Castor Oil		23 deg.C, 168 hr		20	7.1	2.6	4.0	5.1
Hand Cream		23 deg.C, 168 hr		7.9	25	2.8	4.5	4.6
$50 \mathrm{wt} \%$ Ethanol aq.		23 deg.C, 168 hr		6.8	4.9	4.7	5.9	5.6
Oleic acid		60 deg.C, 96 hr		110	120	120	200	140
							* 250 deg.C, 2.16 kgf	

\checkmark Polyester/ KURARITY ${ }^{\top M}$ compounds show better chemical resistance compared with TPC and TPC / TPS compound except for Oleic acid.

Test compounding conditions

Equipment example
Twin extruder: ZSK 25 (Coperion)
Screw: 25mmf, L/D=54

Twin screw extruder

Temperature [deg.C]	C2 (hopper)	C3~C11	C12	Die head
	50	$220-240$	$210-230$	$210-230$
Screw rotation [rpm]	$200-300$			
Vent	Pull			
PCW temperature [deg.C]	$30-50$			

Kuraray Co., Ltd.

Elastomer Division

Tokiwabashi Tower

2-6-4, Otemachi

Chiyoda-ku, Tokyo, 100-0004, Japan
\square elastomer@kuraray.com

```
\(\rightarrow\) www.kuraray.com
\(\rightarrow\) www.elastomer.kuraray.com
```

© Kuraray Co., Ltd. 2022
Precautions should be taken in handling and storage. Please refer to the appropriate Safety Data Sheet for further safety information. In using SEPTON ${ }^{\mathrm{TM}}$, HYBRAR ${ }^{\mathrm{TM}}$ and KURARITY ${ }^{\mathrm{TM}}$, please confirm related laws and regulations, and examine its safety and suitability for the application.
For medical, health care and food contact applications, please contact your Kuraray representative for specific
recommendations. Even so, users must conduct their own assessment, revisions, registrations as well rely in their own technical and legal judgment to establish the safety and efficacy of their compound and/or end product with SEPTON ${ }^{\text {mM, HYBRAR }}$, ${ }^{\text {m }}$ and KURARITY ${ }^{\text {TM }}$ for any application. SEPTON ${ }^{T M}$, HYBRAR ${ }^{\text {TM }}$ and KURARITY ${ }^{T M}$ should not be used in any devices or materials intended for implantation in the human body. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.
KURARITY is a registered trademark or trademark of Kuraray Co., Ltd.

