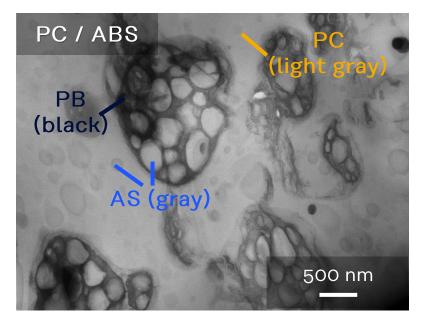
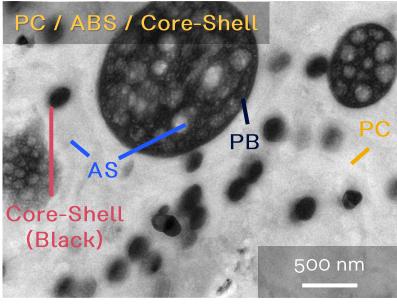

Introduction of KURARITY™ as modifier of PC / ABS and PC / AS

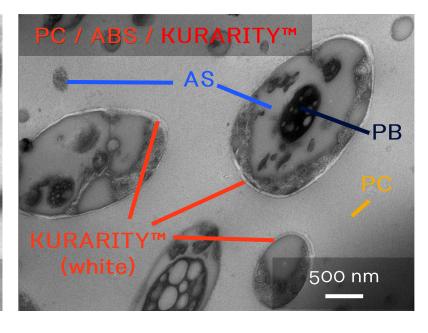
KURARITY business promotion dept. Elastomer Division

Advantages of KURARITY™ as a modifier of PC / ABS and PC / AS

KURARITY™ as a modifier of PC / ABS


Overviewing of our new solution with KURARITY™ (Compare with conventional system)


Product types of	Core	shell	KURARITY™			
Product types of PC / ABS	Impact Flow ability		Impact resistance	Flow ability		
1. General grade	+-	_	++	+		
2. Flame retardant grade	+	_	++	++		
3. GF reinforced grade	+-	+-	+-	++		


- ✓ Compare with conventional PC / ABS / Core-shell type modifier compounds,
 Our new solution is;
 - (+) Excellent flow-ability and impact resistance
- ✓ Modification effect of KURARITY™ depends on product types of PC / ABS.

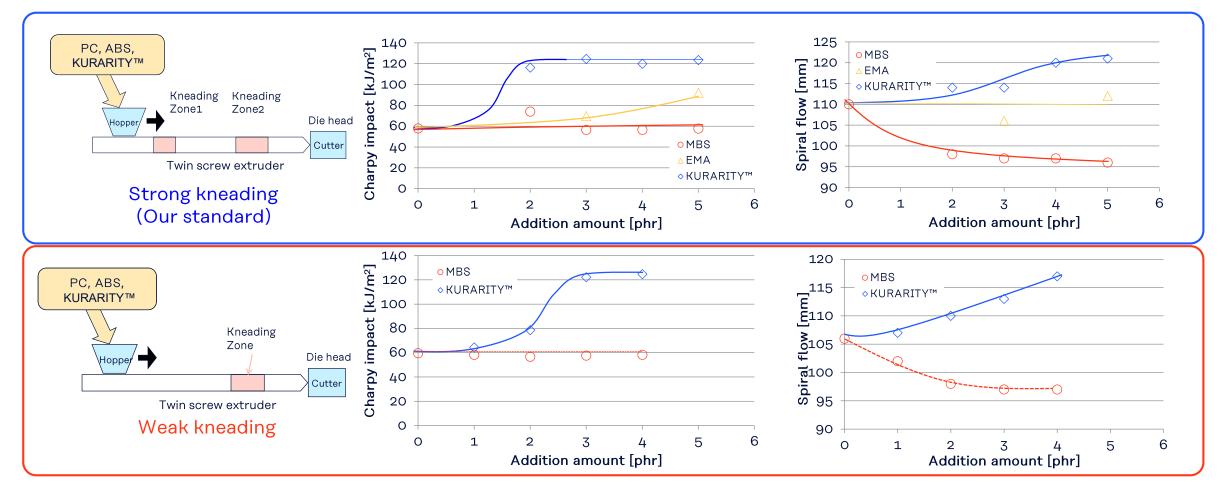
TEM morphology investigations

- ✓ Core-Shell disperses in PC or AS phase.
- ✓ KURARITY™ exists between PC and AS phase.
- => Totally different morphology from conventional core-shell type impact modifiers

KURARITY™ as a modifier for
 PC / ABS general grade
 (Non-reinforced, none flame retardant)

Typical properties (PC/ABS=70/30)

				Ref.1	Ref.2	Ref.3	Ex.1	Ex.2	Ex.3	Ex.4	Ex.5	Ex.6
PC		High flow grade, MFI*	= 15	70	70	70	70	70	70	70	70	70
ABS		High flow grade, MFI**	= 45	30	30	30	30	30	30	30	30	30
		MBS (core-shell type	e)		3						3	3
Modifier	E	EMA (Acrylate 30 wt% t	ype)			3						
		KURARITY™ LA227	0				2	3	4	5	2	5
Items	Methods	Conditions	Units									
MFR	ISO 1133	260 deg.C, 2.16 kgf	g / 10 min	20	10	16	22	20	18	20	11	12
Spiral flow	Kuraray	1 mmt***	mm	110	97	106	114	114	120	121	103	115
Charpy impact	ISO 179	23 deg.C	kJ / m²	58	56	70	116	124	120	123	90	124
with notch	150 179	-30 deg.C	kJ / m²	22	49	33	27	31	67	52	68	121
Flexural modulus	ISO 178	-	GPa	2.2	2.2	2.1	2.2	2.2	2.1	2.1	2.1	2.0
Elongation at break	ISO 527-2	-	%	81	88	100	79	90	97	108	98	114
DTUL	ISO 75	1.80 MPa	deg.C	106	104	105	104	104	104	105	103	103


^{*300} deg.C / 1.2 kgf **220 deg.C / 10 kgf

- ✓ KURARITY™ can enhance impact-resistance and flowability with lower addition amount
- ✓ Considering with cost effect, we recommend 2-3 phr addition to PC / ABS
- ✓ High addition (4-5 phr) makes risks of delamination higher but can improve impact resistance at lower temperature.
- ✓ Combination of KURARITY™ and core-shell type modifier can improve impact resistance especially at lower temperature.

^{***}MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

Kneading effect on addition amount dependency

^{*} phr = per hundred resin , * MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

✓ Kneading affects slightly to KURARITY™ addition amount dependency.

ABS rich formulation (PC / ABS = 60 / 40 ~ 50 / 50)

				Ref.4	Ref.5	Ex.7	Ref.6	Ref.7	Ex.8
PC	High flow grade, MFI* = 15			60	60	60	50	50	50
ABS	Hi	gh flow grade, MFI** = 4	5	40	40	40	50	50	50
Modifier		MBS (core-shell type)			3			3	
Modifier		KURARITY™ LA2270				3			3
Items	Methods	Conditions	Units						
MFR	ISO 1133	260 deg.C, 2.16 kgf	g /10 min	24	12	23	26	13	27
Spiral flow	In-house method	1 mmt***	mm	126	118	132	143	133	146
Charpy impact	ISO 179	23 deg.C	kJ / m²	78	63	120	62	90	120
with notch	150 179	-30 deg.C	kJ / m²	25	32	34	19	28	26
Flexural modulus	ISO 178	-	GPa	2.2	2.1	2.1	2.2	2.1	2.1
Elongation at break	ISO 527-2	-	%	83	103	98	87	103	93
DTUL	ISO 75	1.80 MPa	deg.C	101	100	99	94	93	94

*300 deg.C / 1.2 kgf **220 deg.C / 10 kgf

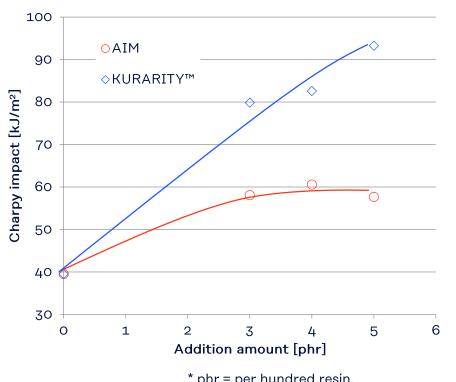
***MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

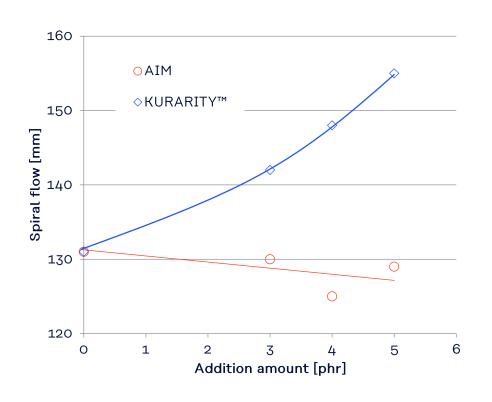
- ✓ Ex.7 and Ex.8 show high spiral flow and charpy impact compared to Ref. 4 to 7.
- ✓ KURARITYTM can improve flow ability and impact resistance even in ABS rich formulations (PC / ABS = $60 / 40 \sim 50 / 50$).

 2. KURARITY™ as a modifier for PC / ABS flame retardant grade (Non-reinforced)

Typical properties (Flame retardant grade)

				Ref.1	Ref.2	Ex.1	Ex.2	Ex.3	Ex.4
PC / ABS	High flow, f	flame retardant grade ((MFI = 22*)	100	100	100	100	100	100
	P	AIM** (Core-shell type)			3				
	KURARITY™ LA2330					3			
Modifier	KURARITY™ LA2250						3		
		KURARITY™ LA2270						3	
		KURARITY™ LA4285							3
Items	Methods	Conditions	Units						
MFR	ISO 1133	260 deg.C, 2.16 kgf	g / 10 min	28	18	27	30	25	24
Spiral flow	In-house method	1mmt***	mm	131	130	149	151	142	132
Charpy impact	ISO 179	23 deg.C	kJ / m ²	40	58	56	85	80	55
with notch	150 179	-30 deg.C	kJ / m²	14	20	15	15	16	14
Flexural modulus	ISO 178	-	GPa	2.8	2.6	2.6	2.6	2.6	2.6
Elongation at break	ISO 527-2	-	%	98	100	117	75	92	105
DTUL	ISO 75	1.80 MPa	deg.C	82	81	82	83	81	83
Flammability	UL 94	1.5mmt		V-o	V-1 equivalent				


^{*260} deg.C / 2.16 kgf, **Acrylic Impact Modifier,


✓ Ex.2 and Ex.3 show high spiral flow and charpy impact compared to Ref.2

^{***} MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

Addition amount dependency

✓ KURARITY™ can increase Charpy impact and flow ability by adding a small amount to PC/ABS.

^{*} phr = per hundred resin.

^{*} MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

Puncture impact test

				Ref.1	Ref.2	Ref.3	Ex.3	Ex.5					
PC / ABS	High fl	ow, flame retardant gr (MFI = 22*)	ade	100	100	100	100	100					
Modifier	AIM (Core-shell type)		AIM (Core-shell type)		AIM (Core-shell type)		AIM (Core-shell type)			3	5		
Modifier	К	URARITY™ LA2270					3	5					
Items	Methods	Conditions	Units										
Maximum force			kN	4.7	4.5	4.5	4.5	4.5					
Deflection at maximum point			mm	17.0	17.5	17.9	17.6	17.7					
Energy to maximum point			J	49.2	49.6	50.2	49.9	49.5					
Puncture deflection		Tomp 107 dog C	mm	18.0	18.6	18.4	19.1	18.8					
Puncture energy	ISO 6603-2	Temp.: 23 deg.C, Speed: 4.4 m / sec,	J	54.0	54.7	52.3	56.3	54.3					
Test piece appearance	0003-2	Thickness: 2 mmt											

✓ KURARITY™ can increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture deflection.

*260 deg.C / 2.16 kgf
increase puncture energy by improving its puncture degree energy by improving its puncture ener

3. KURARITY™ as a modifier forPC / ABS GF reinforced grade(Flame retardant / None flame retardant)

Typical properties (GF reinforced formulations)

				Ref.1	Ref.2	Ex.1	Ex.2
PC / ABS	High flow, flame retardant grade (MFI = 22*)		MFI = 22*)	100	100	100	100
GF	E-	glass, Sizing: Silane typ	е	20	20	20	20
		AIM (Core-shell type)			5		
Modifier		KURARITY™ LA2270				5	
		KURARITY™ LA4285					5
Items	Methods	Conditions	Units				
MFR	ISO 1133	260 deg.C, 2.16 kgf	g / 10min	14	9.4	18	17
Spiral flow	Kuraray	1 mmt**	mm	103	100	131	123
Charpy impact	ISO 179	23 deg.C	kJ / m²	6.6	8.8	9.0	8.7
with notch	130 179	-30 deg.C	kJ / m²	4.4	6.0	6.4	6.0
Flexural modulus	ISO 178	-	GPa	6.0	5.6	5.5	5.6
Elongation at break	ISO 527-2	-	%	2.0	1.9	2.1	2.1
DTUL	ISO 75	1.80 MPa	deg.C	101	102	101	102

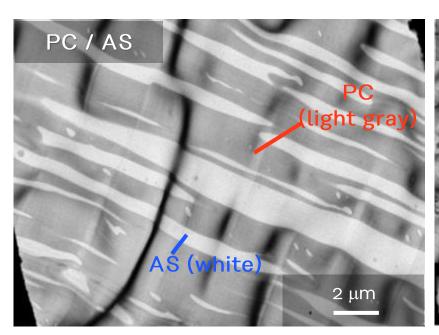
^{*260} deg.C / 2.16 kgf,

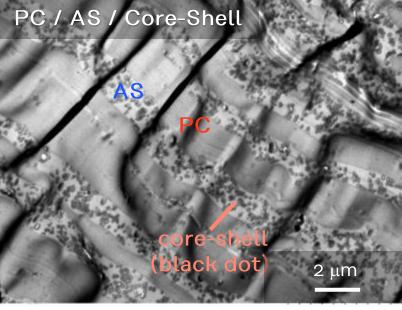
- ✓ Ex.1 and Ex.2 show high spiral flow and same level of charpy impact compared to Ref. 2.
- ✓ KURARITY™ can improve flow ability of PC / ABS / GF remarkably -> Enable to mold thinner

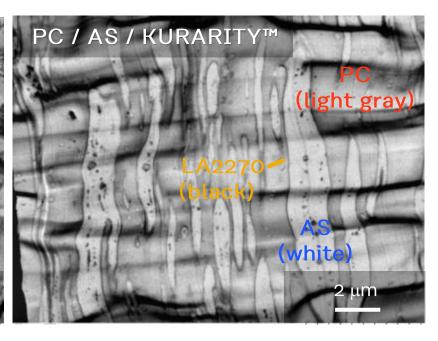
^{**} MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

KURARITY™ as a modifier for PC / AS general grade (Non-reinforced, none flame retardant)

Overviewing of our new solution with KURARITY™ (Compare with conventional system)


Compare with conventional PC / ABS
Our new solution is;


- √ (+-) Same level DTUL, elongation,
- √ (+) Flexural modulus, flow ability,


 Impact resistance and weatherability*.

*Thanks to PC / AS / KURARITY™ system not containing C=C bond, it shows better weatherability.

TEM morphology investigations

- ✓ Core-Shell disperses in PC or AS phase.
- ✓ KURARITY™ exists between PC and AS phase.
- => Totally different morphology from conventional core-shell type impact modifiers

Typical properties (PC / AS = 70 / 30)

				Ref.1	Ref.2	Ref.3	Ref.4	Ref.5	Ex.1	Ex.2	Ех.3	Ex.4	Ex.5	Ex.6
PC		High flow grade, MFI*	= 15	70	70	70	70	70	70	70	70	70	70	70
ABS		High flow grade, MFI**	= 45	30										
AS	ŀ	High flow grade, MFI**	= 30		30	30	30	30	30	30	30	30	30	30
Modifier	Acryli	c silicone type Core sh	nell rubber			3	7	15						4
Modifier		KURARITY™ LA227	70						1	2	3	4	5	3
Items	Methods	Conditions	Units											
MFR	ISO 1133	260 deg.C, 2.16 kgf	g / 10 min	20	13	11	9	7	12	13	13	14	15	11
Spiral flow	In-house method	1 mmt***	mm	110	111	113	113	114	120	120	122	126	131	120
Charpy impact	ISO 179	23 deg.C	KJ / m²	58	3.2	13	15	53	6.0	15	78	123	125	97
with notch	100 179	-30 deg.C	1(3 / 111	22	3.0	8.9	9.1	4.2	5.2	6.2	11	15	13	7.8
Flexural modulus	ISO 178	-	GPa	2.2	2.7	2.7	2.5	2.2	2.7	2.7	2.7	2.7	2.6	2.5
Elongation at break	ISO 527-2	-	%	81	81	66	73	79	75	78	70	63	55	77
DTUL	ISO 75	1.80 MPa	deg.C	106	107	108	104	102	106	106	107	105	106	106

^{*300} deg.C / 1.2 kgf **220 deg.C / 10 kgf

- ✓ Ex.3 Ex.6 show good impact resistance and flowability.
- ✓ Ex.6 (Co-addition of core-shell and KURARITY™) keeps elongation at break.

^{***}MEIKI M100C, Injection temp.: 240 deg.C, Mold temp.: 80 deg.C, Injection pressure: 100 MPa, Injection rate: 50 mm / sec

Puncture impact test

					Ref.1	Ref.2	Ref.4	Ex.3	Ex.5	Ex.6	
PC		High flow g	rade, MFI* = 15		70	70	70	70	70	70	
AS		High flow gr	ade, MFI** = 30		30	30	30	30	30	30	
Modifier	Acryl	ic silicone ty	pe Core shell rubber			3	15			4	
		KURARI	TY™ LA2270					3	5	3	
Ite	ems	Methods	Conditions	Units							
Maximu	ım force			kN	5.3	5.1	4.8	5.1	5.1	4.9	
	ction at ım point				mm	16.3	16.9	17.4	16.7	17.3	16.5
	maximum int						J	51.7	52.2	49.9	51.8
Puncture	deflection	ISO	Temp.: 23 deg.C, Speed: 4.4 m / sec,	mm	17.2	17.7	18.0	18.0	18.4	17.4	
Punctur	e energy	6603-2	Thickness: 2 mmt	J	55.8	55.8	52.9	58.5	58.9	52.3	
	piece arance				1-1	6,		1-11	6	6.	

*300 deg.C / 1.2 kgf **220 deg.C / 10 kgf

✓ The fracture mode of PC / AS changes to ductile fracture by adding KURARITY™ (Ex.3, 5, 6)

Weatherability

					Ref.1	Ref.2	Ref.4	Ex.3	Ex.6		
PC		High flow gra	ade, MFI* =	15	70	70	70	70	70		
AS		High flow grade, MFI** = 30			30	30	30	30	30		
Modifier	Acrylic silicone type Core shell rubber			ll rubber		3	15		4		
Modifier		KURARIT	Y™ LA2270)				3	3		
Items	Methods	Conditions	Units	SWOM test*** Exposure time							
				Ohr	3.2	13	53	78	97		
		23 deg.C				500hr	4.1	11	18	73	110
Charpy impact	ISO 179			KJ/m²	1000hr	3.1	10	18	110	92	
with notch	100 179		137111	Ohr	3.0	8.9	4.2	11	7.8		
		-30 deg.C		500hr	3.8	6.8	3.0	8.6	6.4		
				1000hr	2.9	4.8	4.9	6.7	5.9		
ΔΕ				500hr	3.4	7.2	12	7.0	9.8		
Δ L				1000hr	6.0	11	14	8.6	13		
Test piece appearance	-	Reflection mode	-	-	DL 500k lood	I I I I I I I I I I I I I I I I I I I	3 E 5	Dh 500h (000)	The Sook loool		

*300 deg.C / 1.2 kgf **220 deg.C / 10 kgf,

***SWOM (ISO4892-4) Black Panel temp.: 63 deg.C, Exposure intensity: 255 W / m² (300 - 700 nm)

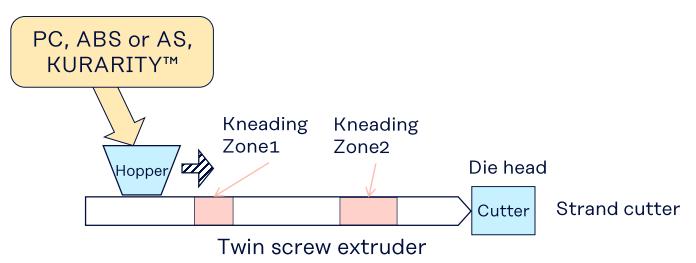
- ✓ After weather resistance test, Ex.3 and Ex.6 keep good impact resistance.
- ✓ Ex.3 shows smaller color change compared to Ref.2 Ref.4.

Weatherability (Filler added formulation)

					Ref.5	Ref.6	Ref.8	Ex.7	Ex.8	Ex.9
PC	High flow grade, MFI* = 15			70	70	70	70	70	70	
AS	High flow grade, MFI** = 30			30	30	30	30	30	30	
Filler	Т	TiO ₂ (Average diameter: 0.21 mm)			4	4	4	4	4	4
Modifier	Acrylic silicone type Core shell rubber					3	15			4
Modifier		KURARI	TY™ LA22	70				3	5	3
Items	Methods	Conditions	Units	SWOM test* Exposure time						
Charpy impact	ISO 179	23 deg.C	KJ/m²	Ohr	7.7	8.3	22	97	120	49
with notch	100 1/9	23 ueg.0	13/111	1000hr	6.6	9.1	17	82	120	16

^{*300} deg.C / 1.2 kgf **220 deg.C / 10 kgf,

✓ Ex.7 and 8 show excellent impact resistance even if the filler is added.

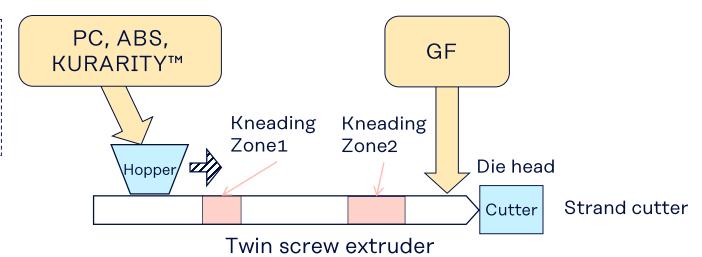

^{***}SWOM (ISO4892-4) Black Panel temp.: 63 deg.C, Exposure intensity: 255 W / m² (300 - 700 nm)

Test compounding conditions (Non - reinforced)

Equipment example

Twin extruder: ZSK 25 (Coperion)

Screw: 25 mm ϕ , L / D = 54


Tomposetuse [dog C]	C2 (hopper)	C3~C11	C12	Die head				
Temperature [deg.C]	50	230-250						
Screw rotation [rpm]	200							
Vent	Pull							
PCW temperature [deg.C]	30-50							

Test compounding conditions (GF - reinforced)

Equipment example

Twin extruder: ZSK 25 (Coperion)

Screw: 25 mm ϕ , L / D = 54

Tomposetuse [dog O]	C2 (hopper)	C3~C11	C12	Die head				
Temperature [deg.C]	50	270-290						
Screw rotation [rpm]	200							
Vent	Pull							
PCW temperature [deg.C]	CW temperature [deg.C] 30-50							

Kuraray Co., Ltd.
Elastomer Division
Tokiwabashi Tower
2-6-4, Otemachi
Chiyoda-ku, Tokyo, 100-0004, Japan

- → www.kuraray.com
- → www.elastomer.kuraray.com
- © Kuraray Co., Ltd. 2022

Precautions should be taken in handling and storage. Please refer to the appropriate Safety Data Sheet for further safety information. In using SEPTON™, HYBRAR™ and KURARITY™, please confirm related laws and regulations, and examine its safety and suitability for the application.

For medical, health care and food contact applications, please contact your Kuraray representative for specific recommendations. Even so, users must conduct their own assessment, revisions, registrations as well rely in their own technical and legal judgment to establish the safety and efficacy of their compound and/or end product with SEPTONTM, HYBRARTM and KURARITYTM for any application. SEPTONTM, HYBRARTM and KURARITYTM should not be used in any devices or materials intended for implantation in the human body. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.

KURARITY is a registered trademark or trademark of Kuraray Co., Ltd.

